Morphological, Epigenomic and Mutational Analyses of PAXgene ${ }^{\circledR}$ Tissue Fixed, Paraffin-Embedded (PFPE) Colorectal Cancer (CRC) Specimens - Comparison to Formalin Fixed, Paraffin Embedded (FFPE) and Snap-Frozen Samples
 ${ }^{1}$ Daniel Grölz, ${ }^{2}$ Kathy Boon, ${ }^{2}$ Jonathan Shaffer, ${ }^{3}$ Nadine Dettmann, ${ }^{3}$ Isabell Blassnig, ${ }^{3}$ Frank Narz, ${ }^{1}$ Ralf Wyrich and ${ }^{1}$ Lynne Rainen ${ }^{1}$ PreAnalytiX GmbH, Hombrechtikon, Switzerland; ${ }^{2}$ SABiosciences Corporation, Frederick, USA ${ }^{3}$ QIAGEN GmbH, Hilden, Germany
 PreAnalytiX

Materials and Methods

Tissue specimens	5 cases of colorectal cancer
Immunohistochemistry	Anti-Human Cytokeratins [clones A1/ /AE3], Cytokeratin 20 [clone $\mathrm{K}_{5} 20.8 \mathrm{8}$ and Ki.67 [clone MB-1] (aako)
ONA purficiation	
PCR	
DNA Methyation analysis	
Pyrosequencing	

Results

Figure 1: H\&E staining

Figure 3: Agarose gel electrophoresis with DNA from five CRC cases

 tissue. (A) Multiolex PCR of eight different tenomic DNA fragments ran
fragment and (C) quantitative β-actin real time PCR on TaqMan 7900 .

Figure 5: DNA Methylation with the Methyl-Profiler ${ }^{\text {m }}$ System

Figure 6: KRAS and BRAF Mutational Analysis by Pyrosequencing

Analysis of mutational status of KRAS and BRAF on P Promark Q 24 MDx using the KRAS and BRAF Pyro Kits from QIAGEN. (A) Same
results for DNA from five cases 1 (1-5) of human colorectal cancer, matched samples of frozen, PPPE and FFPE tissue: Identification of a

HAE, IHC
H\&E, staining of PFPE tissue sections demonstrate intact morphology with slightly more contrast than that seen in FFPE
mirrored samples (Fig 1). Immune reactivity for PPPEE tissue was equivalent to or stronger than reactivity in FFPE tissue
 retrieval was performed in tris / EDTA A buffer, , HH 9.0 . Incubation temperatures for epitope retrieval in PFPE tissue vary
between room temperature and $98^{\circ} \mathrm{C}$ and must be determined for each antibody used.
DNA
DNA
DNA
Genomic DNA isolated from PFPE is of high molecular weight and appears on agarose gels as one distinct band with little
smearing (Fiig 3). Since the DNA is not burdened with crosslinks and chemical modifications, demanding downstream smearing (Fig 3). Since the DNA is not burdened with crosslinks and chemical modifications, demanding downstream
applications such as muttiple, long.range, and quantitative PCR give results comparable to DNA from snap-frozen samples (Fig 4).
DNA Methylation and Sequencing
Methylation patterns of DNA from PFPE
can be analyzed with Methy-Profilerw PCR Array System, a technology based on methlyation-dependent restriction and quantitative PCR. Fractions of different DNA species classified as hypermethy-methylation-dependont restricion and quantitative PCR. Fractions of diriferent DNA Apecies classitied as hypermethy-
lated, intermediately methylated and unnethylated are comparable between PFPE and frozen samples and resulted in
sill small error bars. In contrast, DNA from FFPE samples showed extensive errors and larger differences compared to PFPE
and frozen tissues (Fis 5). In addition, the DNA from PFPE is full compatible with methods developed to work with

Conclusion

- Morphology in PFPE CRC tissue is equivalent to morphology in FFPE CRC samples.
-After optimization of the heat induced epitope retrieval step, immunohistochemical staining methods can be applied.
- High molecular weight DNA can be isolated from PFPE samples.

In PCR assays, DNA from PPFE samples performs as well as DNA from snap frozen samples.
The methylation pattern of DNA from PFPE can be analyzed with the Methyl-Pofiler" PCR Array System.

- DNA from PFFE is suitable for use in pyrosequencing.

References

